Prolonged myelination in human neocortical evolution.

نویسندگان

  • Daniel J Miller
  • Tetyana Duka
  • Cheryl D Stimpson
  • Steven J Schapiro
  • Wallace B Baze
  • Mark J McArthur
  • Archibald J Fobbs
  • André M M Sousa
  • Nenad Sestan
  • Derek E Wildman
  • Leonard Lipovich
  • Christopher W Kuzawa
  • Patrick R Hof
  • Chet C Sherwood
چکیده

Nerve myelination facilitates saltatory action potential conduction and exhibits spatiotemporal variation during development associated with the acquisition of behavioral and cognitive maturity. Although human cognitive development is unique, it is not known whether the ontogenetic progression of myelination in the human neocortex is evolutionarily exceptional. In this study, we quantified myelinated axon fiber length density and the expression of myelin-related proteins throughout postnatal life in the somatosensory (areas 3b/3a/1/2), motor (area 4), frontopolar (prefrontal area 10), and visual (areas 17/18) neocortex of chimpanzees (N = 20) and humans (N = 33). Our examination revealed that neocortical myelination is developmentally protracted in humans compared with chimpanzees. In chimpanzees, the density of myelinated axons increased steadily until adult-like levels were achieved at approximately the time of sexual maturity. In contrast, humans displayed slower myelination during childhood, characterized by a delayed period of maturation that extended beyond late adolescence. This comparative research contributes evidence crucial to understanding the evolution of human cognition and behavior, which arises from the unfolding of nervous system development within the context of an enriched cultural environment. Perturbations of normal developmental processes and the decreased expression of myelin-related molecules have been related to psychiatric disorders such as schizophrenia. Thus, these species differences suggest that the human-specific shift in the timing of cortical maturation during adolescence may have implications for vulnerability to certain psychiatric disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental changes in the transcriptome of human cerebral cortex tissue: long noncoding RNA transcripts.

The human neocortex is characterized by protracted developmental intervals of synaptogenesis and myelination, which allow for an extended period of learning. The molecular basis of these and other postnatal developmental changes in the human cerebral cortex remain incompletely understood. Recently, a new large class of mammalian genes, encoding nonmessenger, long nonprotein-coding ribonucleic a...

متن کامل

P15: Hippocampus-Neocortical Communication in Learning

The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...

متن کامل

Histochemistry of enzyme response to trauma in the neocortex and corpus callosum of developing rat brain.

The enzyme response to injury of the brain was well localized and limited. Some enzymes, even in 12 day old brain, increased rapidly, mainly in neocortical glial cells. In the corpus callosum enzymes were not significantly hyperactive before the light myelination stage. Some hyperactivity declined after 21 days. Oxidative processes and phosphate metabolism were most disturbed.

متن کامل

Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions

Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity pa...

متن کامل

The Effect of Aerobic Training with the Consumption of Probiotic on the Myelination of Nerve Fibers in Cuprizone-Induced Demyelination Mouse Model of Multiple Sclerosis

Introduction: Extensive human and animal research shows that exercise has beneficial effects on multiple clinical outcomes for patients suffering from multiple sclerosis (MS). This research was an attempt to address the effect of aerobic training with the consumption of probiotic on the myelination of nerve fibers in a cuprizone-induced demyelination mouse model of MS. Methods: Mice, which we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 41  شماره 

صفحات  -

تاریخ انتشار 2012